首页> 外文OA文献 >Direct numerical simulation of instabilities in parallel flow with spherical roughness elements
【2h】

Direct numerical simulation of instabilities in parallel flow with spherical roughness elements

机译:具有球形粗糙度单元的平行流不稳定性的直接数值模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Results from a direct numerical simulation of laminar flow over a flat surface with spherical roughness elements using a spectral-element method are given. The numerical simulation approximates roughness as a cellular pattern of identical spheres protruding from a smooth wall. Periodic boundary conditions on the domain's horizontal faces simulate an infinite array of roughness elements extending in the streamwise and spanwise directions, which implies the parallel-flow assumption, and results in a closed domain. A body force, designed to yield the horizontal Blasius velocity in the absence of roughness, sustains the flow. Instabilities above a critical Reynolds number reveal negligible oscillations in the recirculation regions behind each sphere and in the free stream, high-amplitude oscillations in the layer directly above the spheres, and a mean profile with an inflection point near the sphere's crest. The inflection point yields an unstable layer above the roughness (where U''(y) is less than 0) and a stable region within the roughness (where U''(y) is greater than 0). Evidently, the instability begins when the low-momentum or wake region behind an element, being the region most affected by disturbances (purely numerical in this case), goes unstable and moves. In compressible flow with periodic boundaries, this motion sends disturbances to all regions of the domain. In the unstable layer just above the inflection point, the disturbances grow while being carried downstream with a propagation speed equal to the local mean velocity; they do not grow amid the low energy region near the roughness patch. The most amplified disturbance eventually arrives at the next roughness element downstream, perturbing its wake and inducing a global response at a frequency governed by the streamwise spacing between spheres and the mean velocity of the most amplified layer.
机译:给出了使用光谱元素方法对具有球形粗糙度元素的平坦表面上的层流进行直接数值模拟的结果。数值模拟将粗糙度近似为从光滑壁伸出的相同球体的蜂窝状图案。域的水平面上的周期性边界条件模拟了沿流向和跨度方向延伸的无限数量的粗糙度元素,这暗示了平行流假设,并导致了闭合域。设计为在没有粗糙度的情况下产生水平Blasius速度的体力可维持流动。高于雷诺数临界值的不稳定性表明,在每个球体后面和自由流中的再循环区域中的振动可忽略不计,在球体正上方的层中的高振幅振动,以及在球体顶部附近具有拐点的平均轮廓。拐点在粗糙度之上产生不稳定的层(其中U”(y)小于0),并且在粗糙度范围内产生稳定的区域(其中U''(y)大于0)。显然,当元素后面的低动量或尾流区域(受干扰影响最大的区域(在这种情况下,纯数字形式))变得不稳定并移动时,不稳定开始。在具有周期性边界的可压缩流中,此运动将干扰发送到域的所有区域。在拐点正上方的不稳定层中,扰动在向下游传播时传播,传播速度等于局部平均速度。它们不会在粗糙面附近的低能量区域内生长。放大最大的扰动最终到达下游的下一个粗糙度元素,扰动其唤醒并以球之间的流向间距和放大最大层的平均速度所控制的频率引发全局响应。

著录项

  • 作者

    Deanna, R. G.;

  • 作者单位
  • 年度 1992
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号